蜘蛛的几何学(2 / 2)

昆虫记 J·H·法布尔 1409 字 5天前

但是蜘蛛呢它从哪里得到这个概念呢因为它和蠕虫没有什么关系。然而它却很熟悉对数螺线,而且能够简单地运用到它的网中。蜗牛的壳要造好几年,所以它能做得很精致,但蛛网差不多只用一个小时就造成了,所以它只能做出这种曲线的一个轮廊,尽管不精确,但这确实是算得上一个螺旋曲线。是什么东西在指引着它呢除了天生的技巧外,什么都没有。天生的技巧能使动物控制自己的工作,正像植物的花瓣和小蕊的排列法,它们天生就是这样的。没有人教它们怎么做,而事实上,它们也只能作这么一种,蜘蛛自己不知不觉地在练习高等几何学,靠着它生来就有的本领很自然地工作着。

我们抛出一个石子,让它落到地上,这石子在空间的路线是一种特殊的曲线。树上的枯叶被风吹下来落到地上,所经过的路程也是这种形状的曲线。科学家称这种曲线为抛物线。

几何学家对这曲线作了进一步的研究,他们假想这曲线在一根无限长的直线上滚动,那么它的焦点将要划出怎样一道轨迹呢答案是:垂曲线。这要用一个很复杂的代数式来表示。如果要用数字来表示的话,这个数字的值约等于这样一串数字111112112311234的和。

几何学家不喜欢用这么一长串数字来表示,所以就用“e”来代表这个数。e是一个无限不循环小数,数学中常常用到它。

这种线是不是一种理论上的假想呢并不,你到处可以看到垂曲线的图形:当一根弹性线的两端固定,而中间松驰的时候,它就形成了一条垂曲线;当船的帆被风吹着的时候,就会弯曲成垂曲线的图形;这些寻常的图形中都包含着“e”的秘密。一根无足轻重的线,竟包含着这么多深奥的科学我们暂且别惊讶。一根一端固定的线的摇摆,一滴露水从草叶上落下来,一阵微风在水面拂起了微波,这些看上去稀松平常、极为平凡的事,如果从数学的角度去研究的话,就变得非常复杂了。

我们人类的数学测量方法是聪明的。但我们对发明这些方法的人,不必过分地佩服。因为和那些小动物的工作比起来,这些繁重的公式和理论显得又慢又复杂。难道将来我们想不出一个更简单的形式,并使它运用到实际生活中吗难道人类的智慧还不足以让我们不依赖这种复杂的公式吗我相信,越是高深的道理,其表现形式越应该简单而朴实。

在这里,我们这个魔术般的“e”字又在蜘蛛网上被发现了。在一个有雾的早晨,这粘性的线上排了许多小小的露珠。它的重量把蛛网的丝压得弯下来,于是构成了许多垂曲线,像许多透明的宝石串成的链子。太阳一出来,这一串珠子就发出彩虹一般美丽的光彩。好像一串金钢钻。“e”这个数目,就包蕴在这光明灿烂的链子里。望着这美丽的链子,你会发现科学之美、自然之美和探究之美。

几何学,这研究空间的和谐的科学几乎统治着自然界的一切。在铁杉果的鳞片的排列的线条排列中,我们能找到它;在蜗牛的螺线中,我们能找到它;在行星的轨道上,我们也能找到它,它无处不在,无时不在,在原子的世界里,在广大的宇宙中,它的足迹遍布天下。

这种自然的几何学告诉我们,宇宙间有一位万能的几何学家,他已经用它神奇的工具测量过宇宙间所有的东西。所以万事万物都有一定的规律。我觉得用这个假设来解释鹦鹉螺和蛛网的对数螺线,似乎比蠕虫绞尾巴而造成螺线的说法更恰当。